5 resultados para Neurobiology

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerebral prefrontal function is one of the important aspects in neurobiology. Based on the experimental results of neuroanatomy, neurophysiology, behavioral sciences, and the principles of cybernetics and information theory after constructed a simple model simulating prefrontal control function, this paper simulated the behavior of Macaca mulatta completing delayed tasks both before and after its cerebral prefrontal cortex being damaged. The results indicated that there is an obvious difference in the capacity of completing delayed response tasks for the normal monkeys and those of prefrontal cortex cut away. The results are agreement with experiments. The authors suggest that the factors of affecting complete delayed response tasks might be in information keeping and extracting of memory including information storing, keeping and extracting procedures rather than in information storing process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prenatal stress can cause long-term effects on cognitive functions in offspring. Hippocampal synaptic plasticity, believed to be the mechanism underlying certain types of learning and memory, and known to be sensitive to behavioral stress, can be changed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of individual differences among children is an important issue in the study of human intelligence. There are close relation between intelligence and executive functions. Traditional theories, which are based mainly on the factor analysis, approach the problem only from the perspective of psychometrics. However, they do not study the relation of cognition and neurobiology. Some researchers try to explore the essential differences in intelligence from the basic cognitive level, by studying the relationship between executive function and intelligence. The aim of this study was to do the followings 1) to delineate and separate the executive function in children into measurable constructs; 2) to establish the relationship between executive function and intelligence in children; 3) to find out the difference and its neural mechanism between intellectually-gifted and normal children’s executive function. The participants were 188 children aged 7-12 year old. There were 6 executive function tasks. The results were follows: 1) The latent variables analyses showed that there was no stable construct of executive function in 7-10 year old children. The executive function construct of 11-12 year old children could be separated into updating, inhibition and shifting. And they had grown to be more or less the same as adults in the executive function. There were only moderate correlations between the three types of executive function, but they were largely independent of each other. 2) The correlations between the indices of updating, inhibition, shifting and intelligence were different in 7-12 year old children. The older the age, the more the indices were related to intelligence. The updating and shifting were related to intelligence in 7-10 year old children. There were significant correlations between the updating, inhibition, shifting and intelligence in 11-12 year old children. The correlation between updating and intelligence was higher than the correlation between shifting and intelligence. Furthermore, in structural equation models controlling for the three executive functions correlations, updating was highly related to intelligence, but the relations of inhibition and shifting to intelligence were not significant. 3) Intellectually-gifted children performed better than normal children in executive function tasks. The neural mechanism differences between intellectually gifted and average children were indicated by ERP component P3. The present study helps us to understand the relationship between intelligence and executive function; and throws light on the issue of individual differences in intelligence. The present results can provide theoretical support for the development a culture-free intelligence test and a method to promote the development of intelligence. Our present study lends support to the neural efficient hypothesis.